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Agenda
● Introduction

● Why use smartphones for data collection? 

● What can we measure with smartphones?

● Study design considerations from a TSE perspective

● Additional resources
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Introduction
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Who are you?
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Exercise
What sensors does your smartphone have?
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Disclaimer
● Smartphones are an exciting tool for collecting data with many advantages 

over traditional data collection in social sciences
● As with all methods, need to consider errors and costs of using smartphones 

for specific research question in specific target population
● Workshop will provide overview of possibilities and limitations in using 

smartphones among older adults
● Smartphones might not be right tool for some target populations (e.g., people 

with dementia)
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Why use smartphones for data 
collection? 

8
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society

○ High smartphone penetration & quantified-self movement
○ Device present in same physical and social context as user
○ Moving from small scale lab studies to larger scale field studies

9Source: https://www.pewresearch.org/internet/fact-sheet/mobile/#who-owns-cellphones-and-smartphone 

https://www.pewresearch.org/internet/fact-sheet/mobile/#who-owns-cellphones-and-smartphone


Florian Keusch, NIMLAS 2023

Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device

○ In situ measurement (e.g., EMA/ESM)
○ Passive measurement with sensors (e.g., automatic collection of location and 

activity)
○ Use of other device features for active measurement (e.g., photos, videos)
○ Smartphone as hub for other devices (e.g., smart watch, smart scale, via 

Bluetooth)

10
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device
3. More detailed data (frequency and intensity)

○ High frequency of measurement (e.g., intensive longitudinal measurement, 
passive measurement)

○ Much more fine-grained data than in traditional longitudinal designs

11
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device
3. More detailed data (frequency and intensity)
4. Unobtrusive, direct measurement should lead to more accurate estimates

○ Less self-report = Less recall error
○ Less self-report = (Potentially) less social desirability
○ Less self-report = Less data entry error

12
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device
3. More detailed data (frequency and intensity)
4. Unobtrusive, direct measurement should lead to more accurate estimates
5. Less response burden

○ Fewer survey questions have to be asked about (Harari et al. 2017)…
■ Smartphone-mediated behaviors (e.g., # of calls & text messages, Internet browsing, 

app use)
■ Non-mediated behaviors (e.g., physical activity, sleep, movement, travel)
■ Daily activities (e.g., food intake, expenditure)

○ But what about other burden? - Consent, compliance, privacy, etc.

13
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device
3. More detailed data (frequency and intensity)
4. Unobtrusive, direct measurement should lead to more accurate estimates
5. Less response burden
6. Collecting data at scale

○ ~22,000 volunteer iPhone users downloaded Mappiness app and shared activities 
and affect (EMAs) plus geolocation (GPS) for 6 months (MacKarron & Murrato 2013) 

○ 650 members of existing longitudinal study downloaded IAB-SMART app and 
responded to mini-surveys plus shared location, physical activity, and smartphone 
use data for 6 months (Kreuter et al. 2020)

14
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Potential benefits of smartphones
1. Taking advantage of technology that is widely used in society
2. Multiple (new) forms of measurement on a single device
3. More detailed data (frequency and intensity)
4. Unobtrusive, direct measurement should lead to more accurate estimates
5. Less response burden
6. Collecting data at scale
7. New research questions (?)

15
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Potential challenges of smartphones 

1. Coverage
○ “Ubiquity Myth” (Couper 2019)

○ Age, education, gender…
○ “2nd-level digital divide”

16
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Potential challenges of smartphones 

1. Coverage
2. Nonparticipation

○ Willingness
○ Ability
○ Adherence to study protocols

17
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Potential challenges of smartphones 

1. Coverage
2. Nonparticipation
3. Privacy & ethics

○ What concerns do people have?
○ “Privacy paradox”

18
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Potential challenges of smartphones 

1. Coverage
2. Nonparticipation
3. Privacy & ethics
4. Measurement 

○ Data not free of error
○ Technical issues and human behavior can lead to missings and implausible 

readings

19
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What can we measure with 
smartphones?

20
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21Struminskaya & Keusch. (2023)

Smartphones & sensors 
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Native smartphone sensors 

Air humidity sensor

Barometer

Fingerprint sensor

GPS

Proximity sensor

Compass

Light sensor

Microphone

Thermometer
Bluetooth

Wi-Fi

NFC

Accelerometer
Gyroscope

Pedometer

Cellular network

22

Camera

Heart rate sensor
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Native smartphone sensors 

Air humidity sensor

Barometer

Fingerprint sensor

GPS

Proximity sensor

Compass

Light sensor

Microphone

Thermometer
Bluetooth

Wi-Fi

NFC

Accelerometer
Gyroscope

Pedometer

Cellular network
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Camera

Location

Proximity

Physical activity

Ambience/
Environment

Heart rate sensor
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Geolocation
● GPS

○ Provides coordinates in longitude &
Latitude

○ Based on distance (= rate x time) to
at least 4 satellites

○ Newest generation has accuracy
within 30 centimeters

○ Works without cell/Internet connection
○ Performs worse in ‘urban canyons’,

indoors, & underground
○ Constant tracking is very

battery-draining
 

Source: https://www.gpsworld.com/wirelesspersonal-navigationshadow-matching-12550/ 

24

https://www.gpsworld.com/wirelesspersonal-navigationshadow-matching-12550/


Florian Keusch, NIMLAS 2023

Geolocation
● GPS
● Cellular network

○ Multilateration of radio signals
between (several) cell towers

○ Works even if GPS is turned off
○ If there is no signal then location

information will be missing

25Source: https://searchengineland.com/cell-phone-triangulation-
accuracy-is-all-over-the-map-14790   

Source: https://www.cellmapper.net 

https://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790
https://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790
https://www.cellmapper.net
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Geolocation
● GPS
● Cellular network
● Wi-Fi

○ Inferring location from Wi-Fi
access points (AP)

○ Can overcome problem of 
‘urban canyons’ and indoor
tracing

26

Source: https://www.wigle.net 

https://www.wigle.net
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Geolocation
● GPS
● Cellular network
● Wi-Fi
● Hybrid positioning systems

○ Combination of systems to make location more accurate (assisted GPS - AGPS)
○ E.g., fall-back on X if Y is not available

27
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Example: Aging in activity space
(York Cornwell & Cagney 2017, 2020)

● Real-time Neighborhoods and Social Life Study (RNSL)
● 60 participants aged 55+ in NYC provided with iPhones to carry for 7 days
● GPS-tracking (every 5 min) from 9 a.m. to 9 p.m and four EMAs per day

28
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Example: Aging in activity space (Results)
(York Cornwell & Cagney 2017, 2020)

● Activity spaces vary considerably in size
● Participants spent ~40% of their time outside their residential tracts

○ On average >10 min in 9+ tracts
● Activity spaces larger among younger and more advantaged social groups 

(i.e., whites, those with college degree, car owners)
● Participants with less education and lower incomes spend more time outside

of their residential tracts
● Four main activities outside of residential tracts

○ Shopping, exercising, socializing, participating in social groups or activities
● Poverty rates in nonresidential tracts lower than in residential tracts
● Higher concentrated disadvantage in an area associated with higher odds of 

self-reporting pain 29
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Physical activity

● Accelerometer
● Gyroscope

Schlosser et al. (2019)

30
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● Accelerometer
● Gyroscope

and

● Magnetometer
○ Serves as compass

● Barometer
○ Allows to track changes in elevation

Physical activity

31
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Example: Physical activity behavior before, during, 
and after COVID-19 restrictions (McCarthy et al. 2021)

● Weekly minutes of (outdoor) PA of 5,395 existing UK users of BetterPoints 
smartphone app tracked between January and June 2020

● Results:
○ Significant decreases in PA at all time points

throughout lockdown period
○ Those who were most active before lockdown

showed biggest falls in PA
○ Older participants showed less decrease in

PA at start of lockdown and greater increase
as lockdown continued

32
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Sound & light
● Microphone

○ “Actively” records answers to survey questions
○ “Passively” measures ambient noise (e.g., clutter), music, and conversations
○ To preserve privacy, classifiers determine that participant is, for example, “around 

conversation” but not able to reconstruct content or to identify individual speakers
● Light sensor

○ Used to adjust display brightness
○ In combination with other sensors 

(e.g., accelerometer, microphone) 
infers idle state of phone/user &
sleep

33
Source: https://www.theverge.com/circuitbreaker/2017/9/15/16307802/

apple-iphone-x-features-specs-best-worst 

https://www.theverge.com/circuitbreaker/2017/9/15/16307802/apple-iphone-x-features-specs-best-worst
https://www.theverge.com/circuitbreaker/2017/9/15/16307802/apple-iphone-x-features-specs-best-worst
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Example: Daily Experiences and Well-being Study 
(Fingerman et al. 2020)

● Telephone screening to identify home-dwelling aged 65+ 
in Austin, TX (n=333)
○ Oversample of Blacks and Hispanics
○ Without cognitive impairment, not working full-time

● Goal: Study influence of social engagement on physical 
activity, health, and cognitive status

● In-home interview followed by 5 days of:
○ Actigraphy
○ Loaner Android device with apps to record sound and 

prompt for ecological momentary assessment (EMA) - no 
other smartphone functionality

● Daily reminder phone calls & in-home assistance
34
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Example: Electronically Activated Recorder (EAR)
(Fingerman et al. 2022)

● During in-home interview, interviewers entered settings in 
EAR app on phone
○ 30s of recordings every 7 min during waking hours
○ Total of 135,078 audio files

● Devices obtained by interviewer on day 5
● Interviewers responsible for upload and transfer of all data 

from various devices
● Coders rated each file containing sound for presence of 

television
● Findings:

○ More TV watching when alone
○ More loneliness reported during periods of TV watching

35
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Digital phenotyping
● Activities inherent to functions of smartphone (smartphone-mediated 

behaviors) are captured in use logs of device’s OS
○ e.g., phone calls, text messages, app use, Internet browsing behavior, setting 

changes
○ Logs usually include information about type of activity, time, and duration - NO 

information about content
● Alternative approaches

○ In-app content measurement (Murmuras)
○ Human Screenome (Reeves et al. 2020)

● What actually can be recorded depends on OS and user settings
○ iOS much more restrictive than Android

36

https://academia.murmuras.com/
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Use case: Capturing sleep-wake cycles
via tappigraphy (Borger et al. 2019; Huber & Gosh 2021)

● 189 Dutch Android smartphone users (under age 45) 
recorded day-to-day smartphone touchscreen interactions 
via TapCounter app over 3 weeks
○ No. of touchscreen interactions, tapping speed, unlocking 

speed, app locating speed
● Results:

○ Smartphone touches yield reliable proxy measure of sleep 
verified by actigraphy and sleep diaries

○ Digital interactions are part of falling asleep and waking up
● Tappigraphy also used as proxy for cognitive status in 

perioperative setting of brain tumor surgery (Akeret et al. 2020)
37
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Proximity - Bluetooth
● Short-range communication between devices up to 30 m

○ e.g., hands-free devices, audio speakers, printers
● Enabled healthcare devices can connect to smartphones

or other hubs to transmit data
○ e.g., weight, blood pressure, temperature,  heart rate, etc.

● Beacons = small Bluetooth transmitters
○ Need to be dispatched by researcher
○ Bluetooth needs to be activated on

receiving device
○ Great for indoor tracking

38

Source:  https://www.renesas.com/jp/en/solutions/ 
proposal/bluetooth-low-energy.html 

Jud (2018)

https://www.renesas.com/jp/en/solutions/proposal/bluetooth-low-energy.html
https://www.renesas.com/jp/en/solutions/proposal/bluetooth-low-energy.html
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Example: How do people interact in large social 
networks? (Stopczynski et al. 2014)

● Copenhagen Networks Study handed out ∼1,000 smartphones to Danish 
university students

● Extensive questionnaire upon enrollment: 310 questions on topics from public 
health, psychology, anthropology, and economics

● Combination of Bluetooth and Wi-Fi networks to collect information about 
absolute location and relative location to each other

39
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● Photos
○ Food, receipts, physical surroundings, etc.

● Video
● Barcodes
● Linear distance (iPhone Measure app)

Camera

40

Jäckle et al. (2019)
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Example: Taking pictures of surrounding
● Daily Experiences and Well-being Study (Fingerman et al. 2020)

● Interviewers used phone app when returning to pick device up (day 5)
● After completing all other activities, asked participant for consent to take 

picture of room they spend most time in
○ Up to 3 photos
○ Careful selection of motive to avoid

recording any PII
● Environmental conditions of room hand-

coded
○ Lighting, conditions, etc.

41



Florian Keusch, NIMLAS 2023

Self-reports on smartphones
● “Traditional” mobile web surveys

○ Invitations via e-mail, text message, QR code, printed URL, …
○ General design considerations for mobile web surveys (Antoun et al. 2018)

○ Specific design recommendations for older adults (Olmsted-Hawala et al. 2018)

■ Avoid default iOS picker design and use Android spinner style or keyboard 
■ Always label forward and backward navigation buttons using text rather than icons

42
Olmstedal-Hawala et al. (2019) Olmstedal-Hawala et al. (2019)
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Self-reports on smartphones
● “Traditional” mobile web surveys
● Diary studies (e.g., time use, food consumption) via app (or web browser)

43Daily overview Adding activities Adding activity information 
Elevelt et al. (2019)
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Self-reports on smartphones
● “Traditional” mobile web surveys
● Diary studies (e.g., time use, food consumption) via app or web browser
● Ecological Momentary Assessment (EMA)/Experience Sampling Method 

(ESM) via app
○ Collecting data several times a day on several days per week allows tracking of 

change within individuals in much detail 
○ Immediate reporting increases ecological validity
○ Participants “pinged” to report about current circumstances

■ Objective situation: e.g., “What are you doing?”
■ Subjective state: e.g., “How anxious are you right now?”

○ Time-based vs. geolocation-based vs. event-based

44
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Example time-based EMA: Do social connections 
influence health and well-being?
(Fingerman et al. 2020, 2022; Hou et al. 2020)

● EMA to complete every 3 hours for 5 days
● Questions on…

○ Social interactions with people in core 
support network

○ Frequency, type, and duration of 14 sets of 
waking behaviors

○ Mood (positive and negative emotions)

45
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Example geolocation-based EMA (“Geofencing”): 
Visits to job centers (Haas et al. 2020)

46
Source: https://developers.google.com/location-context/geofencing/ 

https://developers.google.com/location-context/geofencing/
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Exercise
Thinking about the target groups you usually work with in your research, what 
could be concrete challenges when using smartphones for data collection? 

47
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Study design considerations from a
Total Survey Error perspective

48
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Total survey error (TSE) framework

49

Construct

Measurement

Response

Target Population

Sampling Frame

Sample

Measurement Representation

Respondents

Edited Response Postsurvey Adjustments

Survey Statistic

Validity

Measurement 
Error

Processing 
Error

Coverage Error

Sampling Error

Nonresponse 
Error

Adjustment 
Error

Groves et al. (2009, p. 48)
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Total survey error (TSE) framework
● Concept, way of thinking about various sources of error that may affect survey 

statistics
● “Error” ≠ “mistake”, rather uncertainty (or lack of confidence) of inference
● Design each component of study to minimize error inherent to that component
● Assess level of error associated with alternative procedures and choose 

combination of approaches best suited to problem
● Errors can arise from many sources

○ Topic, available funding, sampling frame, data collection method, etc.
● In sum, notion of TSE guides design decisions

○ TSE framework helps understanding potential impact of design decisions on errors
○ Together with costs, explicit part of design decisions

50
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Representation error in smartphone data collection

● Coverage error: A study of older adults 
relies on participants to provide data from 
their own smartphones to analyze 
weekend vs. weekday activity by 
sociodemographic groups. The rate of 
ownership of smartphones decreases with 
age; so does the amount of activity.

51

Target Population

Sampling Frame

Sample

Representation

Respondents

Postsurvey Adjustments

Coverage Error

Sampling Error

Nonresponse 
Error

Adjustment 
Error
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To participate in a smartphone study, one needs to…
● …have access to a (specific) smartphone → (potential) Coverage error

52

Smartphone owners

Android users

Population
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BYOD: Smartphone coverage bias in Germany
(Keusch et al. 2020)

● Smartphone ownership
higher among…
○ …younger
○ …male
○ …higher educated
○ …people in New States
○ …people living in larger

communities
➢ Digital Divide

53Source: PASS Wave 11; n = 13,703; Locally weighted scatter-plot smoother (LOWESS) regression
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BYOD: Smartphone coverage bias in Germany
(Keusch et al. 2020)

● Overall smartphone coverage bias in many substantive estimates relatively 
small; especially once adjusting for sociodemographic differences between 
general population and smartphone owners
○ High social inclusion: +2.8 p.p.
○ Size of personal network: n.s.  

● Comparable Android smartphone coverage bias after sociodemographic 
adjustment
○ High social inclusion: +1.6 p.p.
○ Size of personal network: n.s.

● Much larger iPhone coverage bias, even after adjusting for 
sociodemographics (up to 11 p.p.)

54
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Solution to coverage problem: Providing (loaner) 
smartphones
● Providing participants with device for time of field period seems standard 

procedure for studies with older populations (e.g., Compernolle et al. 2022; English et al. 2022; 
Fingerman et al. 2020, 2022; Fritz et al. 2017; Huo et al. 2020; Maher et al. 2018; York Cornwell & Cagney 2017, 
2020)

55

● Pros
○ Increasing coverage
○ Standardizing measurement (e.g., 

iOS vs. Android)
○ Use specifically configured devices

● Cons
○ Ensuring compliance
○ High costs for devices (e.g., as 

incentives or sent in batches) and 
management/ implementation
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Representation error in smartphone data collection

● Nonparticipation error: Individuals with 
higher privacy concerns are less likely to 
consent to sharing GPS data. 

56

Target Population

Sampling Frame

Sample

Representation

Respondents

Postsurvey Adjustments

Coverage Error

Sampling Error

Nonresponse 
Error

Adjustment 
Error
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To participate in a smartphone study, one needs to…
● …have access to a (specific) smartphone → (potential) Coverage error
● …be able to download an app
● …be willing to download an app 

57

Smartphone owners

Android users

Population

(potential) Nonparticipation error

Sample

Participants
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Age as strong predictor of participation in general 
population studies
● UK Understanding Society IP Budget App for receipt scanning (Jäckle et al. 2019)

○ 51-60: -2.6 p.p.
○ 61-70: -5.7 p.p.
○ 71+: -2.2 p.p.

● Dutch CBS Travel App study with GPS
(McCool et al. 2021)

○ under 50: >40%
○ 50-69: 34%
○ 70+: 16%

● IAB-SMART with 5 passive data collection
functions (Keusch et al. 2022) →

58
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Other correlates of non-participation
● Willingness to participate

○ Privacy concerns (Keusch et al. 2019; Revilla et al. 2019; Struminskaya et al. 2020; Wenz et al. 2019) 

○ Smartphone skills and smartphone activities (Keusch et al. 2019; Struminskaya et al. 2020, 2021; Wenz 
et al. 2019)

● Actual participation
○ Education (Jäckle et al. 2019; Keusch et al. 2021, 2022; McCool et al. 2021)

○ Reading proficiency (Keusch et al. 2021)

○ Income (McCool et al. 2021)

○ Panel tenure (Keusch, Bähr et al. 2022)

● Nonparticipation bias in substantive variables
○ Size of personal network and use of social media (Keusch, Bähr et al. 2022)

○ Time use (Elevelt et al. 2019)

○ Financial behavior (Jäckle et al. 2019)
59
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Two major reasons for non-participation reported
● Privacy/security concerns and lack of skills

60
Jäckle et al. (2019) Keusch et al. (2019)
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Some learnings from earlier smartphone studies with 
older adults to secure participation
● In-person recruitment (e.g., in community or senior centers) seems to be 

well-working standard (Fritz et al. 2017; Maher et al. 2018; York Cornwell & Cagney 2017, 2020)

● Telephone recruitment can work but needs in-person follow-up (Fingerman et al. 
2019, 2022; Hou et al. 2020)

● In-person consent, set-up, and training necessity
● Incentives should be provided for study enrollment AND any additional tasks

○ $50 for interview and $100 for EMAs, recordings, and photos (Fingerman et al. 2019, 2022; 
Hou et al. 2020)

○ $80 for at least 80% of all EMAs (Maher et al. 2018)

61
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Potential measures to increase study compliance 
among older participants
● Additional technical support throughout field period
● Vibrate AND sound for EMA pinging
● Pouch to wear smartphone throughout day
● Daily reminder calls to charge device

62Based on experience from the Daily Experiences and Well-being Study (personal communication with Heidi Guyer)
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Measurement error in smartphone data collection

● Validity: You are using actigraphy to detect 
intensity of physical activity in a sample of older 
adults. Your study population is very sedentary 
and it is difficult to identify physical activity 
versus usual activity.

63

Construct

Measurement

Response

Measurement

Edited Response

Validity

Measurement 
Error

Processing 
Error
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● Does absence of light, sound, and activity measured by a smartphone equal 
sleep?

Researchers must often infer behavior from pattern 
of sensor data

64
Chen et al. (2013)
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For some measures, smartphone sensors seem to 
be provide highly valid data

65McCool et al. (2021)
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Whether smartphones measures are valid also 
depends on how individuals use device 

66

Keusch, Wenz, & Conrad (2022)

*

*

*
*

Note: *...likelihood of behavior significantly increases with age
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Measurement error in smartphone data collection

● Measurement error: GPS is less precise in 
urban areas where there are many large 
buildings.

67

Construct

Measurement

Response

Measurement

Edited Response

Validity

Measurement 
Error

Processing 
Error
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Errors during data collection 
● Sensor-based errors/differences

○ Differences between
types of sensors as well
as brands and models
of devices

○ Not one sensor/device
per se better than
others, depends on
what should be
measured under what
circumstances

 

68

Schlosser et al. (2019)
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Errors during data collection 
● Sensor-based errors
● Missing data

○ Technical issues:
■ Urban canyons, underground, etc. when

collecting GPS
■ Device out of power or sleep mode
■ iOS blocks collection of location in background 
■ …

○ Noncompliance:
■ Leaving device at home
■ Deliberately turning device off at certain locations or times
■ Forgetting to turn device back on again
■ Missing permissions
■ …

69

Bähr et al. (2022)
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Errors during data collection 
● Sensor-based errors
● Missing data 
● Erroneous/Invalid data

○ e.g., fake GPS apps, VPN

 

70
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Errors during data collection 
● Sensor-based errors
● Missing data 
● Erroneous data
● Providing feedback & measurement reactivity

○ e.g., participants show 7% more physical activity when 
wearing Fitbit (with feedback) compared to when wearing 
GENEActive (no feedback) (Kapteyn et al. 2021)

 

71

Source: https://twitter.com/mbrennanchina/status/1128201958962032641 

https://twitter.com/mbrennanchina/status/1128201958962032641
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Measurement error in app, sensor & wearables data 
collection

● Processing error: Raw accelerometer data 
are classified as different types of activity 
based on training data.

72

Construct

Measurement

Response

Measurement

Edited Response

Measurement 
Error

Processing 
Error

Validity
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Errors during processing raw data
● Raw sensor data must be processed and classified to infer behavior

○ Processing on user’s device using (built-in) third party or researcher-developed 
algorithm

■ Preserves storage and protects privacy
■ No access to raw data

○ Researcher’s server
■ Full control over data processing
■ All data needs to be transfered

● “Black box” approach when using third-party algorithm to classify data on 
device

○ Activity classification was trained based on data from young adults (“WEIRDOS” 
©Mick P. Couper) → used to classify behavior of older adults

73Source: Kapteyn et al. (2019)
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Example: Detecting types of activity
● Patterns in raw data have to be classified as activities

74Mulder et al. (2019)
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Example: Detecting conversations
● Using smartphone microphone to

detect personal conversations
○ Microphone always on but content of 

conversation not transmitted
○ Outcome of inference: 0 = no 

conversation, 1 = conversation

● Processing raw data on device
○ Privacy sensitive classifiers
○ Transferred data only includes 

aggregated information

75
Rabbi et al. (2011)
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Example: GPS tracks and stop detection

76
McCool et al. (2019)

● Stops defined based on “static” location: radius has to be (pre)defined by 
researcher



Florian Keusch, NIMLAS 2023

Additional Resources
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Selected resources for app development 
● Commercial/Off-the-shelf existing platforms

○ Movisens: https://www.movisens.com/en/
○ MOTUS: https://www.motusresearch.io/en
○ Murmuras: https://murmuras.com/ 

● Commercial app builders(usually no special knowledge required)
○ Appypie  https://www.appypie.com 
○ Ethica Data: https://ethicadata.com/ 
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Selected resources for app development 
● App builders for specific OSs (require some programming knowledge)

○ Apple Research Kit: http://researchkit.org/  
○ ResearchStack for Android: http://researchstack.org/

● Open source platforms/frameworks (require programming knowledge)  
○ AWARE: https://awareframework.com/
○ Beiwe Research Platform: https://www.beiwe.org/ 
○ PACO: https://pacoapp.com/ 
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Selected resources for EMA/ESM
● Specific EMA/ESM software

○ mEMA: https://ilumivu.com
○ ExpiWell: https://www.expiwell.com/ 
○ LifeData: https://www.lifedatacorp.com/ecological-momentary-assessment-app-2/
○ SEMA3: https://sema3.com/ 
○ Other online survey software, such as Blaise5 

(https://blaise.com/products/blaise-5), can be used as sample management 
system that can send surveys at specific time

● Myin-Germeys, Inez, and Peter Kuppens. (Eds.). 2022. The open handbook 
of experience sampling methodology: A step-by-step guide to designing, 
conducting, and analyzing ESM studies. (2nd ed.) Leuven: Center for 
Research on Experience Sampling and Ambulatory Methods Leuven
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Our own book…

Keusch, Florian, Bella Struminskaya, Stephanie Eckman, and Heidi Guyer. 
forthcoming. Data Collection with Wearables, Apps, and Sensors. 

https://bookdown.org/wasbook_feedback/was/ 
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Questions
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If you have questions, need more information, or want to collaborate:

Thank you! 
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Florian Keusch
University of Mannheim
School of Social Sciences
Social Data Science and Methodology
      f.keusch@uni-mannheim.de 
      http://floriankeusch.weebly.com/
      @floriankeusch

mailto:f.keusch@uni-mannheim.de
http://floriankeusch.weebly.com/
https://twitter.com/floriankeusch
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